Conditional Expectation Function

Consider the random variable $Y_i \in \mathbb{R}$ and the random vector $X_i \in \mathbb{R}^k$, $k \geq 1$.

Definition

The Conditional Expectation Function (CEF) - denoted $E[Y_i|X_i]$ - is a **random function**. It is a function that returns the expected value of Y_i for each realized value of X_i . Since X_i is a random vector the resulting function is random itself.

If we fix $X_i = x$, then the value at which we are evaluating the function is no longer random. The result is a constant: the expected value of Y_i at the given x.

$$E[Y_i|X_i=x] = \int y \cdot f_Y(y|X_i=x) dy = \int y dF_Y(y|X_i=x)$$

This follows the same logic that the expectation of a random variable is, $E[Y_i]$, is not random.

Discrete case. The book devotes a lot time to the discussion of cases were X_i is a discrete random variable; using the notation $W_i \in \{0,1\}$ or $D_i \in \{0,1\}$. In this unique case, we can write the CEF as,

$$E[Y_i|D_i] = E[Y_i|D_i = 0] + D_i \cdot (E[Y_i|D_i = 1] - E[Y_i|D_i = 0])$$

The above function returns $E[Y_i|D_i=0]$ when $D_i=0$ and $E[Y_i|D_i=1]$ when $D_i=1$. This expression for the CEF will be useful in latter chapters of the book.

Law of Iterated Expectations

The Law of Iterated Expectations says that given two random variables² $[Y_i, X_i]$, we can express the unconditional expected value of Y_i as the expected value of the conditional expectation of Y_i on X_i .

$$E[Y_i] = E[E[Y_i|X_i]]$$

¹The subscript i is not necessary here. However, this notation is consistent with the rest of the book. In this book, Y_i denotes a random variable, $\in \mathbb{R}$, and Y a random vector, $\in \mathbb{R}^n$. Likewise, X_i is a random vector, $\in \mathbb{R}^k$, while X will represent a random matrix, $\in \mathbb{R}^n \times \mathbb{R}^k$.

²This can be extended to random vectors.

Where the outside expectation is with respect to X_i , since the CEF is a random function of X_i . We can expand this as follows,

$$E[Y_i] = \int t \cdot f_{Y_i}(t) dt = \int \int y \cdot f_{Y_i|X}(y|x) dy f_X(x) dx = E\big[E[Y_i|X_i]\big]$$

Example 0.1. Suppose Y_i and X_i are both discrete, $Y_i \in \{1,2\}$ and $X_i \in \{3,4\}$, with the joint distribution:

Table 1:
$$f_{Y,X}$$

$$X_i = 3 \quad X_i = 2$$

$$Y_i = 1 \quad 1/10 \quad 3/10$$

$$Y_i = 2 \quad 2/10 \quad 4/10$$

We can then define the two marginal distributions,

and,

Table 3:
$$f_X$$

$$X_i = 3 \quad X_i = 4$$
3/10 7/10

Likewise, we know the conditional distribution $f_{Y|X}$; which we get by dividing the joint distribution by the marginal distribution of X_i . Each column of the conditional distribution should add up to 1.

Table 4:
$$f_{Y|X}$$

$$X_{i} = 3 \quad X_{i} = 4$$

$$Y_{i} = 1 \quad 1/3 \quad 3/7$$

$$Y_{i} = 2 \quad 2/3 \quad 4/7$$

Now we can calculate the following objects:

³Some texts use the notation $E_X[E[Y_i|X_i]]$ to demonstrate that the outside expectation is with respect to X_i .

1. $E[Y_i]$

$$\begin{split} E[Y_i] = & 1 \cdot Pr(Y_i = 1) + 2 \cdot Pr(Y_i = 2) \\ = & 1 \cdot 4/10 + 2 \cdot 6/10 \\ = & 16/10 \end{split}$$

2. $E[Y_i|X_i=3]$

$$\begin{split} E[Y_i|X_i = 3] = & 1 \cdot Pr(Y_i = 1|X_i = 3) + 2 \cdot Pr(Y_i = 2|X_i = 3) \\ = & 1 \cdot 1/3 + 2 \cdot 2/3 \\ = & 5/3 \end{split}$$

3. $E[Y_i|X_i=4]$

$$\begin{split} E[Y_i|X_i = 4] = & 1 \cdot Pr(Y_i = 1|X_i = 4) + 2 \cdot Pr(Y_i = 2|X_i = 4) \\ = & 1 \cdot 3/7 + 2 \cdot 4/7 \\ = & 11/7 \end{split}$$

4. $E[E[Y_i|X_i]]$

$$\begin{split} E\big[E[Y_i|X_i]\big] = & E[Y_i|X_i=3] \cdot Pr(X_i=3) + E[Y_i|X_i=4] \cdot Pr(X_i=4) \\ = & 5/3 \cdot 3/10 + 11/7 \cdot 7/10 \\ = & 16/10 \end{split}$$

We have therefore demonstrated the law of iterated expectations.

We can extend this principle to conditional expectations. Suppose you have three random variables/vectors $\{Y_i, X_i, Z_i\}$, we can express the conditional expected value of Y_i on X_i as the (conditional) expected value of the conditional expectation of Y_i on X_i and Z_i .

$$E[Y_i|X_i] = E\big[E[Y_i|X_i,Z_i]|X_i\big]$$

Here the outside expectation is with respect Z_i conditional on X_i . It utilizes the conditional distribution $f_{Z|X}$ to form the outside expectation,

$$E[Y_i|X_i] = \int y \cdot f_{Y|X}(y|X_i) dt = \int \int y \cdot f_{Y|X,Z}(y|X_i,z) dy \\ f_{Z|X}(z|X_i) dz = E\big[E[Y_i|X_i,Z_i]|X_i\big]$$

Properties of the CEF

The following three theorems can be found in a range of Econometrics textbooks and Microeconometrics texts, including MM & MHE

Theorem 0.1. We can express the observed outcome Y_i as a sum of $E[Y_i|X_i] + \varepsilon_i$ where $E[\varepsilon_i|X_i] = 0$ (i.e., mean independent).

Proof.

1.
$$E[\varepsilon_i|X_i] = E[Y_i - E[Y_i|X_i]|X_i] = E[Y_i|X_i] - E[Y_i|X_i] = 0$$

$$2. \ E[h(X_i)\varepsilon_i] = E[h(X_i)E[\varepsilon_i|X_i]] = E[h(X_i)\times 0] = 0$$

Theorem 0.2. $E[Y_i|X_i]$ is the best predictor of Y_i .

Proof.

$$\begin{split} (Y_i - m(X_i))^2 &= \left((Y_i - E[Y_i | X_i]) + \left(E[Y_i | X_i] - m(X_i) \right) \right)^2 \\ &= (Y_i - E[Y_i | X_i])^2 + \left(E[Y_i | X_i] - m(X_i) \right)^2 \\ &+ 2(Y_i - E[Y_i | X_i]) \times \left(E[Y_i | X_i] - m(X_i) \right) \end{split}$$

The last term (cross product) is mean zero. Thus, the function is minimized by setting $m(X_i) = E[Y_i|X_i]$.

Theorem 0.3. [ANOVA Theorem] The variance of Y_i can be decomposed as $V(E[Y_i|X_i]) + E(V(Y_i|X_i))$

Proof.

$$\begin{split} V(Y_i) = &V(E[Y_i|X_i] + \varepsilon_i) \\ = &V(E[Y_i|X_i]) + V(\varepsilon_i) \\ = &V(E[Y_i|X_i]) + E[\varepsilon_i^2] \end{split}$$

The second line follows from Theorem 1.1 (independence) and

$$E[\varepsilon_i^2] = E\left[E[\varepsilon_i^2|X_i]\right] = E\left[V(Y_i|X_i)\right]$$